Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Eur J Immunol ; : e2451035, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627984

RESUMEN

OBJECTIVES: In the post-SARS-CoV-2 pandemic era, "breakthrough infections" are still documented, due to variants of concerns (VoCs) emergence and waning humoral immunity. Despite widespread utilization, the definition of the anti-Spike (S) immunoglobulin-G (IgG) threshold to define protection has unveiled several limitations. Here, we explore the advantages of incorporating T-cell response assessment to enhance the definition of immune memory profile. METHODS: SARS-CoV-2 interferon-gamma release assay test (IGRA) was performed on samples collected longitudinally from immunocompetent healthcare workers throughout their immunization by infection and/or vaccination, anti-receptor-binding domain IgG levels were assessed in parallel. The risk of symptomatic infection according to cellular/humoral immune capacities during Omicron BA.1 wave was then estimated. RESULTS: Close to 40% of our samples were exclusively IGRA-positive, largely due to time elapsed since their last immunization. This suggests that individuals have sustained long-lasting cellular immunity, while they would have been classified as lacking protective immunity based solely on IgG threshold. Moreover, the Cox regression model highlighted that Omicron BA.1 circulation raises the risk of symptomatic infection while increased anti-receptor-binding domain IgG and IGRA levels tended to reduce it. CONCLUSION: The discrepancy between humoral and cellular responses highlights the significance of assessing the overall adaptive immune response. This integrated approach allows the identification of vulnerable subjects and can be of interest to guide antiviral prophylaxis at an individual level.

2.
JAMA Netw Open ; 7(2): e240383, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38407904

RESUMEN

Importance: Sepsis is a leading cause of pediatric mortality. Little attention has been paid to the association between viral DNA and mortality in children and adolescents with sepsis. Objective: To assess the association of the presence of viral DNA with sepsis-related mortality in a large multicenter study. Design, Setting, and Participants: This cohort study compares pediatric patients with and without plasma cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes simplex virus 1 (HSV-1), human herpesvirus 6 (HHV-6), parvovirus B19 (B19V), BK polyomavirus (BKPyV), human adenovirus (HAdV), and torque teno virus (TTV) DNAemia detected by quantitative real-time polymerase chain reaction or plasma IgG antibodies to CMV, EBV, HSV-1, or HHV-6. A total of 401 patients younger than 18 years with severe sepsis were enrolled from 9 pediatric intensive care units (PICUs) in the Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network. Data were collected from 2015 to 2018. Samples were assayed from 2019 to 2022. Data were analyzed from 2022 to 2023. Main Outcomes and Measures: Death while in the PICU. Results: Among the 401 patients included in the analysis, the median age was 6 (IQR, 1-12) years, and 222 (55.4%) were male. One hundred fifty-four patients (38.4%) were previously healthy, 108 (26.9%) were immunocompromised, and 225 (56.1%) had documented infection(s) at enrollment. Forty-four patients (11.0%) died in the PICU. Viral DNAemia with at least 1 virus (excluding TTV) was detected in 191 patients (47.6%) overall, 63 of 108 patients (58.3%) who were immunocompromised, and 128 of 293 (43.7%) who were not immunocompromised at sepsis onset. After adjustment for age, Pediatric Risk of Mortality score, previously healthy status, and immunocompromised status at sepsis onset, CMV (adjusted odds ratio [AOR], 3.01 [95% CI, 1.36-6.45]; P = .007), HAdV (AOR, 3.50 [95% CI, 1.46-8.09]; P = .006), BKPyV (AOR. 3.02 [95% CI, 1.17-7.34]; P = .02), and HHV-6 (AOR, 2.62 [95% CI, 1.31-5.20]; P = .007) DNAemia were each associated with increased mortality. Two or more viruses were detected in 78 patients (19.5%), with mortality among 12 of 32 (37.5%) who were immunocompromised and 9 of 46 (19.6%) who were not immunocompromised at sepsis onset. Herpesvirus seropositivity was common (HSV-1, 82 of 246 [33.3%]; CMV, 107 of 254 [42.1%]; EBV, 152 of 251 [60.6%]; HHV-6, 253 if 257 [98.4%]). After additional adjustment for receipt of blood products in the PICU, EBV seropositivity was associated with increased mortality (AOR, 6.10 [95% CI, 1.00-118.61]; P = .049). Conclusions and Relevance: The findings of this cohort study suggest that DNAemia for CMV, HAdV, BKPyV, and HHV-6 and EBV seropositivity were independently associated with increased sepsis mortality. Further investigation of the underlying biology of these viral DNA infections in children with sepsis is warranted to determine whether they only reflect mortality risk or contribute to mortality.


Asunto(s)
Infecciones por Citomegalovirus , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 1 , Sepsis , Adolescente , Humanos , Masculino , Niño , Lactante , Preescolar , Femenino , ADN Viral , Estudios de Cohortes , Herpesvirus Humano 4 , Virus ADN
3.
Lancet Reg Health Eur ; 32: 100682, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37554664

RESUMEN

Background: The PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice. Methods: Febrile children and controls were recruited on presentation to hospital in 9 European countries 2016-2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed. Findings: Of 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92-5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07-7.59), Group A streptococcus (OR 2.73, 95% CI 1.13-6.09) and E. coli (OR 2.7, 95% CI 1.02-6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11-0.46), influenza B (OR 0.12, 95% CI 0.02-0.37) and RSV (OR 0.16, 95% CI: 0.06-0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23-0.72) and EBV (OR 0.71, 95% CI 0.56-0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively. Interpretation: Most febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics. Funding: EU Horizon 2020 grant 668303.

4.
J Med Virol ; 95(8): e28984, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37503561

RESUMEN

We aimed to evaluate the association between the humoral and cellular immune responses and symptomatic SARS-CoV-2 infection with Delta or Omicron BA.1 variants in fully vaccinated outpatients. Anti-receptor binding domain (RBD) IgG levels and interferon-gamma (IFN-γ) release were evaluated at PCR-diagnosis of SARS-CoV-2 in 636 samples from negative and positive patients during Delta and Omicron BA.1 periods. Median levels of anti-RBD IgG in positive patients were significantly lower than in negative patients for both variants (p < 0.05). The frequency of Omicron BA.1 infection in patients with anti-RBD IgG concentrations ≥1000 binding antibody units (BAU)/mL was 51.0% and decreased to 34.4% in patients with concentrations ≥3000 BAU/mL. For Delta infection, the frequency of infection was significantly lower when applying the same anti-RBD IgG thresholds (13.3% and 5.3% respectively, p < 0.05). In addition, individuals in the hybrid immunity group had a 4.5 times lower risk of Delta infection compared to the homologous vaccination group (aOR = 0.22, 95% CI: [0.05-0.64]. No significant decrease in the risk of Omicron BA.1 infection was observed in the hybrid group compared to the homologous group, but the risk decreased within the hybrid group as anti-RBD IgG titers increased (aOR = 0.08, 95% CI: [0.01-0.41], p = 0.008). IFN-γ release post-SARS-CoV-2 peptide stimulation was not different between samples from patients infected (either with Delta or Omicron BA.1 variant) or not (p > 0.05). Our results show that high circulating levels of anti-RBD IgG and hybrid immunity were independently associated with a lower risk of symptomatic SARS-CoV-2 infection in outpatients with differences according to the infecting variant (www.clinicaltrials.gov; ID NCT05060939).


Asunto(s)
COVID-19 , Hepatitis D , Humanos , Pacientes Ambulatorios , SARS-CoV-2 , COVID-19/prevención & control , Interferón gamma , Inmunoglobulina G , Anticuerpos Antivirales
5.
Biomedicines ; 11(6)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37371798

RESUMEN

Despite the high prevalence of late-onset sepsis (LOS) in neonatal intensive care units, a reliable diagnosis remains difficult. This prospective, multicenter cohort study aimed to identify biomarkers early to rule out the diagnosis of LOS in 230 neonates ≥7 days of life with signs of suspected LOS. Blood levels of eleven protein biomarkers (PCT, IL-10, IL-6, NGAL, IP-10, PTX3, CD14, LBP, IL-27, gelsolin, and calprotectin) were measured. Patients received standard of care blinded to biomarker results, and an independent adjudication committee blinded to biomarker results assigned each patient to either infected, not infected, or unclassified groups. Performances of biomarkers were assessed considering a sensitivity of at least 0.898. The adjudication committee classified 22% of patients as infected and all of these received antibiotics. A total of 27% of the not infected group also received antibiotics. The best biomarkers alone were IL-6, IL-10, and NGAL with an area under the curve (95% confidence interval) of 0.864 (0.798-0.929), 0.845 (0.777-0.914), and 0.829 (0.760-0.898), respectively. The best combinations of up to four biomarkers were PCT/IL-10, PTX3/NGAL, and PTX3/NGAL/gelsolin. The best models of biomarkers could have identified not infected patients early on and avoided up to 64% of unjustified antibiotics. At the onset of clinical suspicion of LOS, additional biomarkers could help the clinician in identifying non-infected patients.

6.
J Pediatric Infect Dis Soc ; 12(6): 322-331, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37255317

RESUMEN

BACKGROUND: To identify a diagnostic blood transcriptomic signature that distinguishes multisystem inflammatory syndrome in children (MIS-C) from Kawasaki disease (KD), bacterial infections, and viral infections. METHODS: Children presenting with MIS-C to participating hospitals in the United Kingdom and the European Union between April 2020 and April 2021 were prospectively recruited. Whole-blood RNA Sequencing was performed, contrasting the transcriptomes of children with MIS-C (n = 38) to those from children with KD (n = 136), definite bacterial (DB; n = 188) and viral infections (DV; n = 138). Genes significantly differentially expressed (SDE) between MIS-C and comparator groups were identified. Feature selection was used to identify genes that optimally distinguish MIS-C from other diseases, which were subsequently translated into RT-qPCR assays and evaluated in an independent validation set comprising MIS-C (n = 37), KD (n = 19), DB (n = 56), DV (n = 43), and COVID-19 (n = 39). RESULTS: In the discovery set, 5696 genes were SDE between MIS-C and combined comparator disease groups. Five genes were identified as potential MIS-C diagnostic biomarkers (HSPBAP1, VPS37C, TGFB1, MX2, and TRBV11-2), achieving an AUC of 96.8% (95% CI: 94.6%-98.9%) in the discovery set, and were translated into RT-qPCR assays. The RT-qPCR 5-gene signature achieved an AUC of 93.2% (95% CI: 88.3%-97.7%) in the independent validation set when distinguishing MIS-C from KD, DB, and DV. CONCLUSIONS: MIS-C can be distinguished from KD, DB, and DV groups using a 5-gene blood RNA expression signature. The small number of genes in the signature and good performance in both discovery and validation sets should enable the development of a diagnostic test for MIS-C.


Asunto(s)
COVID-19 , Síndrome Mucocutáneo Linfonodular , Niño , Humanos , COVID-19/diagnóstico , COVID-19/genética , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Síndrome de Respuesta Inflamatoria Sistémica/genética , Hospitales , Síndrome Mucocutáneo Linfonodular/diagnóstico , Síndrome Mucocutáneo Linfonodular/genética , Prueba de COVID-19
7.
Euro Surveill ; 28(15)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37052679

RESUMEN

BackgroundTo cope with the persistence of the COVID-19 epidemic and the decrease in antibody levels following vaccination, a third dose of vaccine has been recommended in the general population. However, several vaccine regimens had been used initially for the primary vaccination course, and the heterologous Vaxzevria/Comirnaty regimen had shown better efficacy and immunogenicity than the homologous Comirnaty/Comirnaty regimen.AimWe wanted to determine if this benefit was retained after a third dose of an mRNA vaccine.MethodsWe combined an observational epidemiological study of SARS-CoV-2 infections among vaccinated healthcare workers at the University Hospital of Lyon, France, with a prospective cohort study to analyse immunological parameters before and after the third mRNA vaccine dose.ResultsFollowing the second vaccine dose, heterologous vaccination regimens were more protective against infection than homologous regimens (adjusted hazard ratio (HR) = 1.88; 95% confidence interval (CI): 1.18-3.00; p = 0.008), but this was no longer the case after the third dose (adjusted HR = 0.86; 95% CI: 0.72-1.02; p = 0.082). Receptor-binding domain-specific IgG levels and serum neutralisation capacity against different SARS-CoV-2 variants were higher after the third dose than after the second dose in the homologous regimen group, but not in the heterologous group.ConclusionThe advantage conferred by heterologous vaccination was lost after the third dose in terms of both protection and immunogenicity. Immunological measurements 1 month after vaccination suggest that heterologous vaccination induces maximal immunity after the second dose, whereas the third dose is required to reach the same level in individuals with a homologous regimen.


Asunto(s)
COVID-19 , Vacunas , Humanos , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Francia/epidemiología , Estudios Prospectivos , SARS-CoV-2 , Vacunación
8.
Crit Care ; 27(1): 158, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085849

RESUMEN

BACKGROUND: The development of stratification tools based on the assessment of circulating mRNA of genes involved in the immune response is constrained by the heterogeneity of septic patients. The aim of this study is to develop a transcriptomic score based on a pragmatic combination of immune-related genes detected with a prototype multiplex PCR tool. METHODS: As training cohort, we used the gene expression dataset obtained from 176 critically ill patients enrolled in the REALISM study (NCT02638779) with various etiologies and still hospitalized in intensive care unit (ICU) at day 5-7. Based on the performances of each gene taken independently to identify patients developing ICU-acquired infections (ICU-AI) after day 5-7, we built an unweighted score assuming the independence of each gene. We then determined the performances of this score to identify a subgroup of patients at high risk to develop ICU-AI, and both longer ICU length of stay and mortality of this high-risk group were assessed. Finally, we validated the effectiveness of this score in a retrospective cohort of 257 septic patients. RESULTS: This transcriptomic score (TScore) enabled the identification of a high-risk group of patients (49%) with an increased rate of ICU-AI when compared to the low-risk group (49% vs. 4%, respectively), with longer ICU length of stay (13 days [95% CI 8-30] vs. 7 days [95% CI 6-9], p < 0.001) and higher ICU mortality (15% vs. 2%). High-risk patients exhibited biological features of immune suppression with low monocytic HLA-DR levels, higher immature neutrophils rates and higher IL10 concentrations. Using the TScore, we identified 160 high-risk patients (62%) in the validation cohort, with 30% of ICU-AI (vs. 18% in the low-risk group, p = 0.06), and significantly higher mortality and longer ICU length of stay. CONCLUSIONS: The transcriptomic score provides a useful and reliable companion diagnostic tool to further develop immune modulating drugs in sepsis in the context of personalized medicine.


Asunto(s)
Sepsis , Transcriptoma , Humanos , Estudios Retrospectivos , Enfermedad Crítica , Sepsis/diagnóstico , Sepsis/genética , Unidades de Cuidados Intensivos , Progresión de la Enfermedad
9.
Trends Analyt Chem ; 160: 116963, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36968318

RESUMEN

Real-time polymerase chain reaction (qPCR) enables accurate detection and quantification of nucleic acids and has become a fundamental tool in biological sciences, bioengineering and medicine. By combining multiple primer sets in one reaction, it is possible to detect several DNA or RNA targets simultaneously, a process called multiplex PCR (mPCR) which is key to attaining optimal throughput, cost-effectiveness and efficiency in molecular diagnostics, particularly in infectious diseases. Multiple solutions have been devised to increase multiplexing in qPCR, including single-well techniques, using target-specific fluorescent oligonucleotide probes, and spatial multiplexing, where segregation of the sample enables parallel amplification of multiple targets. However, these solutions are mostly limited to three or four targets, or highly sophisticated and expensive instrumentation. There is a need for innovations that will push forward the multiplexing field in qPCR, enabling for a next generation of diagnostic tools which could accommodate high throughput in an affordable manner. To this end, the use of machine learning (ML) algorithms (data-driven solutions) has recently emerged to leverage information contained in amplification and melting curves (AC and MC, respectively) - two of the most standard bio-signals emitted during qPCR - for accurate classification of multiple nucleic acid targets in a single reaction. Therefore, this review aims to demonstrate and illustrate that data-driven solutions can be successfully coupled with state-of-the-art and common qPCR platforms using a variety of amplification chemistries to enhance multiplexing in qPCR. Further, because both ACs and MCs can be predicted from sequence data using thermodynamic databases, it has also become possible to use computer simulation to rationalize and optimize the design of mPCR assays where target detection is supported by data-driven technologies. Thus, this review also discusses recent work converging towards the development of an end-to-end framework where knowledge-based and data-driven software solutions are integrated to streamline assay design, and increase the accuracy of target detection and quantification in the multiplex setting. We envision that concerted efforts by academic and industry scientists will help advance these technologies, to a point where they become mature and robust enough to bring about major improvements in the detection of nucleic acids across many fields.

10.
Sci Transl Med ; 15(687): eade0550, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921035

RESUMEN

The diversity of vaccination modalities and infection history are both variables that have an impact on the immune memory of individuals vaccinated against SARS-CoV-2. To gain more accurate knowledge of how these parameters imprint on immune memory, we conducted a long-term follow-up of SARS-CoV-2 spike protein-specific immune memory in unvaccinated and vaccinated COVID-19 convalescent individuals as well as in infection-naïve vaccinated individuals. Here, we report that individuals from the convalescent vaccinated (hybrid immunity) group have the highest concentrations of spike protein-specific antibodies at 6 months after vaccination. As compared with infection-naïve vaccinated individuals, they also display increased frequencies of an atypical mucosa-targeted memory B cell subset. These individuals also exhibited enhanced TH1 polarization of their SARS-CoV-2 spike protein-specific follicular T helper cell pool. Together, our data suggest that prior SARS-CoV-2 infection increases the titers of SARS-CoV-2 spike protein-specific antibody responses elicited by subsequent vaccination and induces modifications in the composition of the spike protein-specific memory B cell pool that are compatible with enhanced functional protection at mucosal sites.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos , Vacunación , Anticuerpos Antivirales , Anticuerpos Neutralizantes
11.
Crit Care Med ; 51(6): 808-816, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36917594

RESUMEN

OBJECTIVES: There is a crucial unmet need for biomarker-guided diagnostic and prognostic enrichment in clinical trials evaluating immune modulating therapies in critically ill patients. Low monocyte expression of human leukocyte antigen-DR (mHLA-DR), considered as a reference surrogate to identify immunosuppressed patients, has been proposed for patient stratification in immunostimulation approaches. However, its widespread use in clinic has been somewhat hampered by technical constraints inherent to flow cytometry technology. The objective of the present study was to evaluate the ability of a prototype multiplex polymerase chain reaction tool (immune profiling panel [IPP]) to identify immunosuppressed ICU patients characterized by a low mHLA-DR expression. DESIGN: Retrospective observational cohort study. SETTING: Adult ICU in a University Hospital, Lyon, France. PATIENTS: Critically ill patients with various etiologies enrolled in the REAnimation Low Immune Status Marker study (NCT02638779). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: mHLA-DR and IPP data were obtained from 1,731 blood samples collected from critically ill patients with various etiologies and healthy volunteers. A partial least square regression model combining the expression levels of IPP markers was trained and used for the identification of samples from patients presenting with evidence of immunosuppression, defined here as mHLADR less than 8,000 antibodies bound per cell (AB/C). The IPP gene set had an area under the receiver operating characteristic curve (AUC) of 0.86 (95% CI 0.83-0.89) for the identification of immunosuppressed patients. In addition, when applied to the 123 patients still in the ICU at days 5-7 after admission, IPP similarly enriched the number of patients with ICU-acquired infections in the immunosuppressed group (26%), in comparison with low mHLA-DR (22%). CONCLUSIONS: This study reports on the potential of the IPP gene set to identify ICU patients presenting with mHLA-DR less than 8,000 AB/C. Upon further optimization and validation, this molecular tool may help in the stratification of patients that could benefit from immunostimulation in the context of personalized medicine.


Asunto(s)
Enfermedad Crítica , Monocitos , Adulto , Humanos , Estudios Retrospectivos , Antígenos HLA-DR/genética , Biomarcadores , Anticuerpos
12.
Transplant Cell Ther ; 29(2): 94.e1-94.e13, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36336259

RESUMEN

Immune reconstitution after allogeneic-hematopoietic-stem-cell transplantation (allo-HSCT) is a complex and individual process. In this cross-sectional study, whole-blood (WB) immune functional assay (IFA) was used to characterize immune function by assessing immune-related gene/pathway alterations. The usefulness of this tool in the context of infection, 6 months after transplantation, was evaluated. Sixty allo-HSCT recipients at 6 months after transplantation and 10 healthy volunteers (HV) were included. WB was stimulated in standardized TruCulture tubes using lipopolysaccharides and Staphylococcal enterotoxin B. Gene expression was quantified using a custom 144-gene panel using NanoString nCounter technology and analyzed using Ingenuity Pathway Analysis. The relationships between immune function and clinical characteristics, immune cell counts, and post-transplantation infections were assessed. Allo-HSCT recipients were able to activate similar networks of the innate and adaptive immune response compared to HV, with, nevertheless, a lower intensity. A reduced number and a lower expression of genes associated with immunoregulatory and inflammatory processes were observed in allo-HSCT recipients. The use of immunosuppressive treatments was associated with a protracted immune reconstitution revealed by transcriptomic immunoprofiling. No difference in immune cell counts was observed among patients receiving or not receiving immunosuppressive treatments using a large immunophenotyping panel. Moreover, the expression of a set of genes, including CCL3/CCL4, was significantly lower in patients with Herpesviridae reactivation (32%, 19/60), which once again was not identified using classical immune cell counts. Transcriptional IFA revealed the heterogeneity among allo-HSCT recipients with a reduced immune function, a result that could not be captured by circulating immune cell counts. This highlights the potential added value of this tool for the personalized care of immunocompromised patients.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Reconstitución Inmune , Humanos , Trasplante Homólogo , Estudios Transversales , Inmunofenotipificación
13.
PLoS One ; 17(12): e0275336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36538525

RESUMEN

BACKGROUND: Point-of-care-tests (POCTs) have been advocated to optimise care in patients with infections but their actual use varies. This study aimed to estimate the variability in the adoption of current POCTs by paediatricians across Europe, and to explore the determinants of variability. METHODS AND FINDINGS: A cross-sectional survey was conducted of hospital and primary care paediatricians, recruited through professional networks. Questions focused on the availability and use of currently available POCTs. Data were analysed descriptively and using Median Odds Ratio (MOR) to measure variation between countries. Multilevel regression modelling using changes in the area under the receiver operating characteristic curve of models were used to assess the contribution of individual or workplace versus country level factors, to the observed variation. The commonest POCT was urine dipsticks (UD) which were available to >80% of primary care and hospital paediatricians in 68% (13/19) and 79% (23/29) countries, respectively. Availability of all POCTs varied between countries. In primary care, the country (MOR) varied from 1.61 (95%CI: 1.04-2.58) for lactate to 7.28 (95%CI: 3.04-24.35) for UD. In hospitals, the country MOR varied from 1.37 (95%CI:1.04-1.80) for lactate to 11.93 (95%CI:3.35-72.23) for UD. Most paediatricians in primary care (69%, 795/1154) and hospital (81%, 962/1188) would use a diagnostic test in the case scenario of an infant with undifferentiated fever. Multilevel regression modelling showed that the country of work was more important in predicting both the availability and use of POCTs than individual or workplace characteristics. CONCLUSION: There is substantial variability in the adoption of POCTs for the management of acute infections in children across Europe. To inform future implementation of both existing and innovative tests, further research is needed to understand what drives the variation between countries, the needs of frontline clinicians, and the role of diagnostic tests in the management of acute childhood infections.


Asunto(s)
Pruebas en el Punto de Atención , Prueba de Diagnóstico Rápido , Lactante , Humanos , Niño , Estudios Transversales , Pediatras , Lactatos
14.
Sci Rep ; 12(1): 21458, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36509812

RESUMEN

Few biomarkers for sepsis diagnosis are commonly used in neonatal sepsis. While the role of host response is increasingly recognized in sepsis pathogenesis and prognosis, there is a need for evaluating new biomarkers targeting host response in regions where sepsis burden is high and medico-economic resources are scarce. The objective of the study is to evaluate diagnostic and prognostic accuracy of biomarkers of neonatal sepsis in Sub Saharan Africa. This prospective multicentre study included newborn infants delivered in the Abomey-Calavi region in South Benin and their follow-up from birth to 3 months of age. Accuracy of transcriptional (CD74, CX3CR1), proteic (PCT, IL-6, IL-10, IP-10) biomarkers and clinical characteristics to diagnose and prognose neonatal sepsis were measured. At delivery, cord blood from all consecutive newborns were sampled and analysed, and infants were followed for a 12 weeks' period. Five hundred and eighty-one newborns were enrolled. One hundred and seventy-two newborns developed neonatal sepsis (29.6%) and death occurred in forty-nine infants (8.4%). Although PCT, IL-6 and IP-10 levels were independently associated with sepsis diagnosis, diagnostic accuracy of clinical variables combinations was similar to combinations with biomarkers and superior to biomarkers alone. Nonetheless, CD74, being the only biomarkers independently associated with mortality, showed elevated prognosis accuracy (AUC > 0.9) either alone or in combination with other biomarkers (eg. CD74/IP-10) or clinical criterion (eg. Apgar 1, birth weight). These results suggest that cord blood PCT had a low accuracy for diagnosing early onset neonatal sepsis in Sub Saharan African neonates, while association of clinical criterion showed to be more accurate than any biomarkers taken independently. At birth, CD74, either associated with IP-10 or clinical criterion, had the best accuracy in prognosing sepsis mortality.Trial registration Clinicaltrial.gov registration number: NCT03780712. Registered 19 December 2018. Retrospectively registered.


Asunto(s)
Sepsis Neonatal , Sepsis , Lactante , Recién Nacido , Humanos , Sepsis Neonatal/diagnóstico , Calcitonina , Precursores de Proteínas , Interleucina-6 , Proteína C-Reactiva/análisis , Estudios Prospectivos , Péptido Relacionado con Gen de Calcitonina , Sepsis/diagnóstico , Biomarcadores , África del Sur del Sahara
15.
Front Immunol ; 13: 1022750, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389738

RESUMEN

Immune responses affiliated with COVID-19 severity have been characterized and associated with deleterious outcomes. These approaches were mainly based on research tools not usable in routine clinical practice at the bedside. We observed that a multiplex transcriptomic panel prototype termed Immune Profiling Panel (IPP) could capture the dysregulation of immune responses of ICU COVID-19 patients at admission. Nine transcripts were associated with mortality in univariate analysis and this 9-mRNA signature remained significantly associated with mortality in a multivariate analysis that included age, SOFA and Charlson scores. Using a machine learning model with these 9 mRNA, we could predict the 28-day survival status with an Area Under the Receiver Operating Curve (AUROC) of 0.764. Interestingly, adding patients' age to the model resulted in increased performance to predict the 28-day mortality (AUROC reaching 0.839). This prototype IPP demonstrated that such a tool, upon clinical/analytical validation and clearance by regulatory agencies could be used in clinical routine settings to quickly identify patients with higher risk of death requiring thus early aggressive intensive care.


Asunto(s)
COVID-19 , Enfermedad Crítica , Humanos , ARN Mensajero , Hospitalización , Reacción en Cadena de la Polimerasa
16.
J Clin Med ; 11(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362791

RESUMEN

The diagnosis of serious bacterial infection (SBI) in young febrile children remains challenging. This prospective, multicentre, observational study aimed to identify new protein marker combinations that can differentiate a bacterial infection from a viral infection in 983 children, aged 7 days-36 months, presenting with a suspected SBI at three French paediatric emergency departments. The blood levels of seven protein markers (CRP, PCT, IL-6, NGAL, MxA, TRAIL, IP-10) were measured at enrolment. The patients received the standard of care, blinded to the biomarker results. An independent adjudication committee assigned a bacterial vs. viral infection diagnosis based on clinical data, blinded to the biomarker results. Computational modelling was applied to the blood levels of the biomarkers using independent training and validation cohorts. Model performances (area under the curve (AUC), positive and negative likelihood ratios (LR+ and LR-)) were calculated and compared to those of the routine biomarkers CRP and PCT. The targeted performance for added value over CRP or PCT was LR+ ≥ 5.67 and LR- ≤ 0.5. Out of 652 analysed patients, several marker combinations outperformed CRP and PCT, although none achieved the targeted performance criteria in the 7 days-36 months population. The models seemed to perform better in younger (7-91 day-old) patients, with the CRP/MxA/TRAIL combination performing best (AUC 0.895, LR+ 10.46, LR- 0.16). Although computational modelling using combinations of bacterial- and viral-induced host-protein markers is promising, further optimisation is necessary to improve SBI diagnosis in young febrile children.

17.
Emerg Microbes Infect ; 11(1): 2423-2432, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36098494

RESUMEN

Omicron variant is circulating in the presence of a globally acquired immunity unlike the ancestral SARS-CoV-2 isolate. Herein, we investigated the normalized viral load dynamics and viral culture status in 44 fully vaccinated healthcare workers (HCWs) infected with the Omicron BA.1 variant. Viral load dynamics of 38 unvaccinated HCWs infected with the 20A variant during the first pandemic wave was also studied. We then explored the impact of Omicron infection on pre-existing immunity assessing anti-RBD IgG levels, neutralizing antibody titres against 19A, Delta and Omicron isolates, as well as IFN-γ release following cell stimulation with SARS-CoV-2 peptides. We reported that two weeks after diagnosis a greater proportion of HCWs infected with 20A (78.9%, 15/19) than with Omicron BA.1 (44.7%, 17/38; p = 0.02) were still positive by RT-qPCR. We found that Omicron breakthrough infections led to an overall enhancement of vaccine-induced humoral and cellular immunity as soon as a median [interquartile range] of 8 [7-9] days post symptom onset. Among samples with similar high viral loads, non-culturable samples exhibited higher neutralizing antibody titres and anti-RBD IgG levels than culturable samples. Additionally, Omicron infection led to an enhancement of antibodies neutralization capacity against other SARS-CoV-2 isolates. Taken together, the results suggest that Omicron BA.1 vaccine breakthrough infection is associated with a faster viral clearance than that of the ancestral SARS-CoV-2, in addition this new variant leads to a rapid enhancement of the humoral response against multiple SARS-CoV-2 variants, and of the cellular response.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2/genética , Esparcimiento de Virus , Anticuerpos Antivirales , Inmunoglobulina G , Anticuerpos Neutralizantes
18.
Front Immunol ; 13: 919806, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967359

RESUMEN

Herpes zoster, which is due to the reactivation of Varicella zoster virus (VZV), is a leading cause of morbidity after allogeneic hematopoietic stem cell transplantation (allo-HSCT). While cell-mediated immunity (CMI) is critical to inhibiting VZV reactivation, CMI is not routinely assessed due to a lack of reliable tests. In this study, we aimed to evaluate VZV-specific CMI among allo-HSCT recipients (n = 60) and healthy individuals (HI, n = 17) through a panel of three immune functional assays after ex vivo stimulation by VZV antigen: quantification of (i) IFN-γ release in the supernatants, (ii) T-cell proliferation after a 7-day stimulation of peripheral blood mononuclear cells (PBMC), and (iii) measurement of the ifn-γ mRNA gene expression level after 24 h of stimulation of a whole-blood sample. VZV responsiveness was defined according to IFN-γ release from VZV-stimulated PBMC. Upon VZV stimulation, we found that allo-HSCT recipients at a median time of 6 [5-8] months post-transplant had lower IFN-γ release (median [IQR], 0.34 [0.12-8.56] vs. 409.5 [143.9-910.2] pg/ml, P <.0001) and fewer proliferating T cells (0.05 [0.01-0.57] % vs. 8.74 [3.12-15.05] %, P <.0001) than HI. A subset of allo-HSCT recipients (VZV-responders, n = 15/57, 26%) distinguished themselves from VZV-non-responders (n = 42/57, 74%; missing data, n = 3) by higher IFN-γ release (80.45 [54.3-312.8] vs. 0.22 [0.12-0.42] pg/ml, P <.0001) and T-cell proliferation (2.22 [1.18-7.56] % vs. 0.002 [0.001-0.11] %, P <.0001), suggesting recovery of VZV-specific CMI. Interestingly, VZV responders had a significant fold increase in ifn-γ gene expression, whereas ifn-γ mRNA was not detected in whole blood of VZV-non-responders (P <.0001). This study is the first to suggest that measurement of ifn-γ gene expression in 24-h-stimulated whole blood could be an accurate test of VZV-specific CMI. The routine use of this immune functional assay to guide antiviral prophylaxis at an individual level remains to be evaluated.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Herpesvirus Humano 3 , Expresión Génica , Humanos , Inmunidad Celular , Interferón gamma/metabolismo , Leucocitos Mononucleares , ARN Mensajero/genética
19.
Viruses ; 14(8)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-36016297

RESUMEN

Whole-genome sequencing has become an essential tool for real-time genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide. The handling of raw next-generation sequencing (NGS) data is a major challenge for sequencing laboratories. We developed an easy-to-use web-based application (EPISEQ SARS-CoV-2) to analyse SARS-CoV-2 NGS data generated on common sequencing platforms using a variety of commercially available reagents. This application performs in one click a quality check, a reference-based genome assembly, and the analysis of the generated consensus sequence as to coverage of the reference genome, mutation screening and variant identification according to the up-to-date Nextstrain clade and Pango lineage. In this study, we validated the EPISEQ SARS-CoV-2 pipeline against a reference pipeline and compared the performance of NGS data generated by different sequencing protocols using EPISEQ SARS-CoV-2. We showed a strong agreement in SARS-CoV-2 clade and lineage identification (>99%) and in spike mutation detection (>99%) between EPISEQ SARS-CoV-2 and the reference pipeline. The comparison of several sequencing approaches using EPISEQ SARS-CoV-2 revealed 100% concordance in clade and lineage classification. It also uncovered reagent-related sequencing issues with a potential impact on SARS-CoV-2 mutation reporting. Altogether, EPISEQ SARS-CoV-2 allows an easy, rapid and reliable analysis of raw NGS data to support the sequencing efforts of laboratories with limited bioinformatics capacity and those willing to accelerate genomic surveillance of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación , SARS-CoV-2/genética
20.
Ann Intensive Care ; 12(1): 76, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35976460

RESUMEN

BACKGROUND: Although multiple individual immune parameters have been demonstrated to predict the occurrence of secondary infection after critical illness, significant questions remain with regards to the selection, timing and clinical utility of such immune monitoring tests. RESEARCH QUESTION: As a sub-study of the REALISM study, the REALIST score was developed as a pragmatic approach to help clinicians better identify and stratify patients at high risk for secondary infection, using a simple set of relatively available and technically robust biomarkers. STUDY DESIGN AND METHODS: This is a sub-study of a single-centre prospective cohort study of immune profiling in critically ill adults admitted after severe trauma, major surgery or sepsis/septic shock. For the REALIST score, five immune parameters were pre-emptively selected based on their clinical applicability and technical robustness. Predictive power of different parameters and combinations of parameters was assessed. The main outcome of interest was the occurrence of secondary infection within 30 days. RESULTS: After excluding statistically redundant and poorly predictive parameters, three parameters remained in the REALIST score: mHLA-DR, percentage of immature (CD10- CD16-) neutrophils and serum IL-10 level. In the cohort of interest (n = 189), incidence of secondary infection at day 30 increased from 8% for patients with REALIST score of 0 to 46% in patients with a score of 3 abnormal parameters, measured ad D5-7. When adjusted for a priori identified clinical risk factors for secondary infection (SOFA score and invasive mechanical ventilation at D5-7), a higher REALIST score was independently associated with increased risk of secondary infection (42 events (22.2%), adjusted HR 3.22 (1.09-9.50), p = 0.034) and mortality (10 events (5.3%), p = 0.001). INTERPRETATION: We derived and presented the REALIST score, a simple and pragmatic stratification strategy which provides clinicians with a clear assessment of the immune status of their patients. This new tool could help optimize care of these individuals and could contribute in designing future trials of immune stimulation strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...